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A criterion for the stability of the steady motion of a viscous fluid be-
tween two parallel planes was established by Reynolds' as 2pbUr1nu < 517,
where p = density, 2b = distance between the parallel planes, Un.
mean velocity, and , = coefficient of viscosity. A much lower figure 167
was found by Sharpe2 and later Orr3 obtained the figure 117. In this
paper by expressing the small motion which is superimposed on the steady
motion (the Reynold's method of solution) in the form of a Fourier's
Series it is possible to show that the method employed by Reynolds gives
a result as small as that of Orr. Also by applying Calculus of Variations
the minimum value 116.8 is obtained.

Equations of Motion.-Consider a viscous fluid of density p moving in
two dimensions with component velocities u, v, in directions x, y, re-
spectively. The dynamical equations of motion are

;;P-a = - { (P.x + puu) + (Pys + pv)(1)

P-at-- {a (Pxy + pvu) + (PYY + pvv)

where the stresses in the fluid are given by

bu (bv o~~~/v )U\
Pxx~ ~ b=b-#a,PY -/ y, bx y la y).(a

b~u 6jv
We have also the equation of continuity - + 0=.

b7:x b)y
Steady Motion.- In the case of a fluid moving between two parallel

planes there exists a solution of these equations of the form

1 2)p y2 - b2
V .2

.=- (2)U~~~/= 6,aX 2'.(2
bp.where y = b are the equations of the planes and
bX is constant. The

equations (1) for this case reduce to

ap d2u
A7~~~~~ ~(2a)bx dy2
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The average velocity is
b

Iudy
1b

_ _ = ak_1 pb2,
Um bb3M 2

b 3,u bx

therefore .? = - 3MAUrn/b2, U = 3 Ur(b2-y2)/b2.
6x 2

Turbulent Motion.-Consider a motion given by u = u + u' andv =
v + v' where u, v are periodic functions of period I with regards to x and also
functions of y such that

I rI I r I
fu'dx = fv'dx = 0 and u = f udx, v = fvdx.

To obtain the equations of turbulent motion substitute for u, v, in equa-
tions (1) and take the mean value of each member over a length I in the
x-direction. The resulting equations for the mean motion are

pao:- { aX(xx + puu + pu'U') + -d (pyx + pUV + pUV)}
(6 -- a6- --3)

- (pXy + pvu +pv,u' ) + - (Pyy + pvv + pvY)

where Pj = Pij + P'ij. Subtracting equations (3) from (1) we have the
equations of relative motion,

R at = -{ pXx + p(uu' + u'u) + p(u'u' - u'u')J +
6t - 1x

by [P'yx + p(UV' + u'v) + p(u'v' - UY) I
6v' (6 (4)

p a: = - {u- [Py + p(vu' + v'u) + p(v'U' - vWu')] +
ay[PYY + P(Wv' + v'v) + P(V'v' - V/;7 )]}

To obtain the rate of change of the energy for the mean motion multiply
equation (3) by u, v and add. Putting 2E = p(u2 + v2) we obtain

6 - -6z -

__- x l[U(Pxx + pu'u')] + Iu(pyx + PUY)

6: {6 [v(Pxy + PV,U9 I + yI[V(pyy +pv'v')]
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=x- + Pyx bi) + ut x + utvt
bu

t[vx'(j4a+v'' ( by+v'v'])

bx+ Pxyx axuu -r+u -

In a similar manner to obtain the equation for the rate of change of mean
energy of the relative motion multiply (4) by u', v', and add. Omitting
terms whose averagme excepis zero and putting 2u =iguth +vv'vf')
we have

6Pt _ X [utx +PU'Ut + byfu'(P;x + PUtVt

d[V(Pxy + pv u ) + (Pyy + pv v

i-bJO dt Jut..u 6 -

-x + PYX | 6: + u4dxY

If we integrate (5) and (6) between the planes, the last terms in each

motion and is the same except for sign. After substituting the value from
(la) we have from (6)

Xb dtdd
I

-P b I-UI + u

a

mus alsorshatiftheeaivontionuityequtionse out/ +tis =ees0rtandth

thehtboundaemco u7) = 0 whenoy = tb

b ~dtdxE dy = I-0I 2 ° dx8)
-b udt I

where ~~ ~ ~ ~~~~OI,,I7rh obl nerl neqain() ece auso '

the bounderythaondieltions moio ma not di ou iteis neesr tht.h
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Assuming da c2X d1i 27rx

a2r . 27rx 2r 27rxav=,c sin I 8cos

where a = ,8 =da - d3 0, when y =
- b, substituting for u' andwherea=~=~dy dy

v' in II, I2 and integrating over the length I in the x-direction we have

II = IJ b27rt a d da du(

I2 = fb{Q)4 (a2 + #2) + 2 (2) [(da)y + (dyA2i +

(dy2) +(dy2} (9)

dp a~2u\ d
From equation (3) we have dx= - d-y (''). Comparing

this with (2a) we see that in I, we may take

du 3 Um
dy b2 Y

since uv' is small. Equation (8) reduces to

I6irUm ftbt( dC _ da y d
b212 Ib dy dydy

If turbulent motion is just possible then equation (8) may be written

lb3 { (a2+ 32) + 2 (2f) [(d) + (d)2] +

3 (d~~~~~~~~2a'~2+ (2Y }dy
3 K1 = \dy

2

bsbA, (9a)

where K1 = 2pb UmI,u and the function a, ,B, of y and the length I are to be
determined so that A is a minimum.

(a = ao+ ()+l an cos Y
Assuming ; 1

( = 13o+ (-1)n+lCos7Y1~~~~~~
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which satisfy the boundary conditions if ao - a =Po- O,n = 0.
1 1

Taking a =pi = 0 for i > 2, substituting the values a and , in A we
have

2b6( If) (A2 + P2)+ b (2T) [(B2 + Q2) + (C2 + R2)]

+ 2b(27)2 [Q)2 (B2 + Q2) + (C2 + R2)]

+ b [(b)(B2 + Q2) +(b)4 (C2 + R2]

2j [2b(AQ-BBP) + 2b(AR-PC) + 3°(CQ-BR)]

where ao = A1, a, = B, a2 = C, fo = P. Pi = Q, #2 = R.
Putting A = B + C and P = Q + R we have

X2- (B2 + Q2) + - (C2 + R2) + I. (BC + QR)
2 ~~~2

v (CQ - BR)

where Xi = 2 [3 (TF) + 2 (21r)2 (br)2 + ( p)4] 231

[2=23 2l/ + 2 (27r)27 + (2)4] 4= 27r) (9b)
[ (z ) (I )(b ) (b)A]l

The conditions for a mmimum value of A are

iBX+ Cu+RvA = 0
9CN2 + BA - QvA = 0
QQX, + RA - CvA = 0~RX2 + Q/AL + BP'A = 0

which have a solution provided the determinant

JA 0 AV
A X2 -AVO(X°X2-(1 .2 + A2p2)2 =0.
0 -AP 'X1 I

AV 0 M 2

Substituting the value of 'X, X2, JA, V, from equations (9b) and minimizing
this expression with respect to I we find K = 131.4. This is a value of
the criterion when only three terms are. used in the series a and ,B.
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If we take a =Pi = 0 for i > 3 we have

a =A + B cos 'ry -C cos 2d+ D cos 3'ry,

= P + Q cos -Y- R cos + S cos bY.b bb

Substituting these values in A we arrive at a determinant of the 6th order.
This determinant is similar to that of the fourth order in the previous
calculation and is also a perfect square. In fact, it can be easily proven
that all succeeding determinants are perfect squares.
From the determinant of the 6th order we obtain a value for K1 = 120.9

and from the 8th order K1 = 118.5. Due to the mathematical computa-
tion involved this process becomes very laborious.

In the preceding work we expressed a and , by Fourier's Series which
satisfied the boundary conditions exactly and determined conditions on
the coefficients which were necessary for a minimum value of A and so
found an approximate minimum for K1. We can also determine by Cal-
culus of Variations, differential equations which a and , must satisfy,
if they furnish a minimum value of A, solve these equations and deter-
mine the arbitrary constants so that the boundary conditions are satisfied.

Beginning with the expression for A in (9) by the ordinary process of
Calculus of Variations4 we arrive at the differential equations,

27r4 (2ii.)2 d2a d4ad#2 [(X4 - 2 (21)da+ d ]=-A(+ 2y d-y2 a I2 dy2 dy4 = -

2[(2r 4 2v_2 2rd2# d4fl (+2da
A~ ~ ~ ~ ~ (

Putting (2 - k1, and y' = 27r y and omitting ('), we have
2 2741

-2 d2a + d4aO k( +2d d:dy2 + dy4 = k / yId (10)

dy2 dy 4
\ + y)

Multiplying the second equation in (10) by i adding it to the first and
replacing ik by k, we have

(D2 - 1)2(a + ij3) = k(l + 2yD)(a + it3). (11)
This equation has four linearly independent solutions of the form

a + i, = P + kQ +k2R + ...
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where P = cosh y, sinh y, y cosh y or y sinh y. The general solution
contains four arbitrary complex constants. The boundary conditions which
the arbitrary constants must satisfy separate them into two sets one
corresponding to the solutions with P = cosh y and y sinh y, the other to
the solutions with P = sinh y and y cosh y. The former are found to
lead to a lower value of k. Assuming a power series in y for a + i,8 and
substituting in (11) we find with P = cosh y.

+ Y2 + (1 + k) 4! + (1 + 7k) Y + (1 + 22k +9k2) Y-+2! 4!6! 8!

(1 + 50k + 109k2) Yo + (1 + 95k + 583k2 + 153ks) YL +10! 12!

ai + il = (1+ 161k+ 2097k2 + 2595k3) Y4 + (1 + 252k + 6006k2 +14!

19612k3 + 3825k4) i- + (1 + 372k + 14574k2 + 97732k3 +16!

82905k4) 81 +

and with p - Y sinh y
2

2 04 y6
[YJ'Yt. (3 +5k) + (4+28k) Ys+(5+90k+2! ' 4T6'. 8

65k2) -Yo- + (6 + 220k + 606k2) Y12 +(7+455k+3037k2+10! 12!
a2z+$i = 14 16

1365k3) Y- + (8 + 840k + 10968k2 + 17880k3) Y- +14! 16!

(9 + 1428k + 32094k2 + 122468k3 + 39585k4) y18, +...

where the coefficients are determined by the law

AX+4 - 2A+2 + {1- (2n + 1)k}An = 0.

Taking the solution a + i, = (C1 + iC2) (ai + iBi) + (C3 + iC4) (a2 + i2),

a = Clal- C201 + C3a2 -C42
then , = ClSl + C2al + C3,32 + C4a2.

The arbitrary constants C1, C2, C3, C4 must satisfy the conditions given by

a=0,j =0 ,a = a' = 0,p - 3 - owhen y = 2 . Eliminating

Cl, C2, C3, C4,
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a]-8 a2-~2

,1 l 2, a, = 0.al -PI a2 -02

g1 al 2 a2

The left-hand member is of the form R2 + S2 where

a, + i,l a2 + i2
R+iS= andR=S=0. (12)

a, + ip °2 +i2

When the values of a,, a2, j1, /2, are substituted in (12) S is fotnd to vanish
identically and R = 0 gives the following equation:

0 - 1. + 2 + 8y- +3! + (128 + 32k2) Y + (512 + 320k2)- ! 5! 7!' 9!1!

(2048 + 2816k2) 1 + (8192 + 21504k2) y + (32768 + 147456k2 +

! 1! 18
15360k4) 2116 + (131072 + 933888k2 + 276480k4) lY +17! 19!
2zwbwhere y = - . We wish to determine the value of y which gives the least

valueof:K= (2r4)bak. We therefore assume a series for 32ky ofthe

form
A
+ B + Cy2 + Dy4+Ey6y2

Substituting and determining the coefficients A, B, C, D, E, we find

32k2y6 - _ 1.00556 0. 244949 - 0.04020465y2
9! y

-0;001426054y4 + O.00010464y6.

which gives a minimum value of K = 116.84.
1 Collected Papers, 2, p. 524.
2 Transactions, Amer. Mfath. Soc., 1905.
3 Proc. Roy. Irish Soc., 27, 1907.
4 Wilson, Advanced Calculus, p. 400.


